模糊神经网络参数学习是一个函数优化问题。针对已有优化方法收敛精度不高的缺点,提出基于文化量子粒子群算法的模糊神经网络参数优化,并将其应用于混沌时间序列预测。仿真实例结果证实了该算法的优越性。