为了满足移动机器人准确定位的要求,提出了一种基于模糊卡尔曼滤波(FKF)的自定位算法。利用扩展卡尔曼滤波(EKF)算法融合里程计和声纳的观测数据,并针对EKF中观测噪声方差估计不准确导致滤波器性能下降甚至发散的问题,提出了基于模糊逻辑的自适应调节算法。该算法通过监测新息实际方差和理论方差的一致程度,在线调整观测噪声的方差值。仿真结果表明,此方法较EKF提高了系统的定位精度和鲁棒性。