基于神经网络的车用发动机广义预测控制
为了改善具有非线性特性的发动机燃油控制效果,以达到高效率、低污染的要求。利用一种前向神经网络作为非线性系统的模型,并将其分为线性部分和非线性部分。其中非线性部分用单隐层的BP神经网络对其建模,采用学习速度较快的Davidon最小二乘法在线调整网络权值;线性部分采用受控自回归积分滑动平均(CARIMA)模型作为其数学模型,用递推最小二乘法(RLS)作为其参数辨识的方法。每步将所得非线性系统的网络模型线性展开,得到线性回归模型,并以非线性前馈增益方式补偿建模误差,建立了一种适合非线性系统的自校正广义预测控制器。仿真结果表明该算法收敛速度快,控制动作平稳,控制效果理想。
暂无评论