提出一种基于纹理的木材显微细胞图像分类算法。通过非下采样的Contourlet变换模极值密度提取图像纹理特征,并采用K近邻分类方法进行分类,实现对木材显微细胞图像的分类。实验结果表明:平均识别正确率在85%以上。提出的方法能有效地实现对木材显微细胞图像的分类。