针对多传感器目标识别仿真模型的验证问题,提出了一种基于多神经网络的“分层有序”的模型验证方法。该方法利用神经网络的自组织和自学习能力,通过对各种目标识别模型关键行为特性的学习,将实际系统行为归类为其中的一种模型,从而对模型的可信性做出评估。仿真结果进一步说明了该方法的可行性和有效性。