针对采用BP神经网络对煤与瓦斯突出预测时的过学习现象,引入遗传算法对煤与瓦斯突出的影响因素进行选择,并建立了以筛选出的变量作为输入的优化BP网络预测模型.遗传算法中染色体采用二进制编码,个体适应度函数引入了惩罚函数,并对基本遗传算法的遗传操作算子进行了一定的改进,最后利用平煤八矿煤与瓦斯突出的实测样本,在MAT-LAB2009b环境中对上述算法进行仿真研究.结果表明,以遗传算法筛选出的变量作为输入建立的预测模型的输出结果的拟合效果变好,预测精度提高,建模时间缩短.