针对当前大数据应用主要以通用处理器为计算核心,且系统结构单一、能效比低,无法充分满足大数据的计算需求,基于拟态计算模型,提出了一种大数据高效能平台的设计方法。以算粒为基本研究对象,深入剖析大数据应用算法的特征,合理划分各计算子任务;其次,构造体系结构匹配矩阵,将子任务分配到合理的处理部件上;最后,利用动态电压/频率调节技术和数据布局算法实现非关键任务的电压控制,并优化关键任务的结构布局。实验结果表明,拟态计算能深度融合各异构计算部件,建立具有灵活、可拓展的体系结构,充分发挥系统整体执行效率,降低功耗,提高能效比。