暂无评论
提出一种集合经验模态分解(EEMD)降噪与隐马尔科夫模型(HMM)的采煤机摇臂滚动轴承故障诊断方法。采用基于峭度准则的EEMD对采集到的振动信号进行降噪预处理,筛选出包含主要特征频率的本征模态函数(I
滚动轴承是机械传动系统重要的组成部分,其故障发生率极高,直接影响机械设备的正常、安全运行。基于此提出基于局部均值分解(LMD)模糊熵和概率神经网络(PNN)的滚动轴承故障诊断方法,原始振动信号应用LM
为了解决电机在变负载运行条件下滚动轴承振动信号故障的特征提取困难以及故障诊断准确率低的问题,研究者提出了一种基于变步长粒子群的变分模态分解与贝叶斯网络相结合的滚动轴承故障诊断模型。通过变步长粒子群算法
针对滚动轴承聚类故障聚类模式识别方法中需要预先设定聚类数目问题,提出了一种基于局部均值分解(localmeandecompoeiton,LMD)与基本尺度熵(basescaleentropy,BSE)
使用小波分析对各种轴承进行故障诊断,打开.m文件,然后把相应的信号数据载入.mat进行保存,仿真是时候把.m和.mat文件设定在同一路径,即可画出图形。
针对滚动轴承故障信号具有非平稳、非高斯的特点,提出了将时域分析与小波分析相结合的方法对滚动轴承进行故障诊断。在研究不同信号分析方法理论的基础上,以滚动轴承外圈故障振动信号为例,采用多种信号处理方法进行
将经验模式分解(empirical mode decomposition,EMD)、Hilbert变换和细化(ZOOM)技术结合在一起。通过EMD分解的自适应滤波算法,避免了依靠经验来设置带通滤波器的
分滚动轴承和滑动轴承两部分介绍。 内容比较详细,我只看了滚动轴承部分。
结合小波分析及神经网络算法对轴承各种故障进行诊断鉴别
随着现代制造业朝着大型化、柔性化、智能化发展,保障生产设备的安全运转越发重要。提出了基于PCA-SVM算法的轴承故障诊断分析模型。该模型提取轴承振动信号的时域指标参数,并运用主成分分析法(PCA)对指
暂无评论