基于FASTICA与PNN的齿轮箱故障诊断研究

aking16141 16 0 PDF 2020-07-24 05:07:29

机械设备运行中得到的诊断信息往往存在信噪比低、信号混叠等问题,严重影响提取真实的故障信号特征,降低了诊断准确率。针对上述问题,提出一种新的基于快速独立分量分析与概率神经网络的设备故障诊断方法,FASTICA对振动信号降噪处理后提取特征,PNN实现故障识别。通过算法仿真以及LMS齿轮箱实验证明,该融合算法处理后的动态故障诊断能力和诊断精度都明显提高。

基于FASTICA与PNN的齿轮箱故障诊断研究

用户评论
请输入评论内容
评分:
暂无评论