暂无评论
研究了独立分量分析(ICA)算法在运动模糊图像检索中的应用。首先,对图片库中的图像进行ICA处理,构造由相互独立的基向量构成的子空间,将图片库中的图像及运动模糊图像分别向该空间投影,获得各自的特征。其
核函数、惩罚因子、核参数是影响支持向量数据描述(SVDD)分类方法分类效果的重要因素。研究了多核支持向量数据描述(MKSVDD)分类方法,给出了多核支持向量数据描述分类方法的实现步骤,基于banana
针对复杂系统建模与仿真中模型验证的特点,提出基于后验概率支持向量机(supportvectormachine,SVM)的仿真模型验证方法。采用基于误差分析的特征提取方法提取各可选仿真模型和实际系统输出
针对支持向量机方法在标记用户数据不充分的情况下无法有效实现托攻击检测的不足,提出一种基于SVM-KNN的半监督托攻击检测方法。根据少量标记用户数据训练一个初始SVM分类器,利用初始SVM对大量未标记用
体数据的分类用于确定体素的可见性,在三维体绘制中起着重要的作用。提出一种基于熵的体数据分类算法。首先根据累计直方图将体数据的直方图进行分段,然后根据熵判别式在每个分段中计算一个阈值作为阻光度传递函数的
在现实世界的数据分类应用中,通常会遇到数据不平衡的问题,即数据中一类数据的数量要大于另一类数据的数量。在目前针对非平衡数据的分类问题的解决方案中,推进算法因其能通过多次迭代提高少数类的分类指标来提高分
运用PYTHON中的LIBSVM工具包,对TE数据中的多类故障进行SVM分类。
通过对AdHoc网络QoS组播路由问题的深入研究,提出了一种融合量子粒子群优化和蚁群优化的群智能混合算法(QPSOACO算法)。该算法融合QPSO思想以加速蚁群算法在路由发现及维护时的收敛速度,进一步
分析和研究了自适应降维算法在高维数据挖掘中的应用。针对已有数据挖掘算法因维灾难导致的在处理高维数据时准确率和聚类质量都较低的情况, 将二分K-均值聚类和SVM决策树算法结合在一起, 提出了一种适用于高
提出了一种用支持向量机(SVM)权重向量解决高维对象分类的方法,并结合云理论建立了基于SVM权重向量的云分类器。采用云模型建立训练集的各属性模型,分类模型由属性模型集成得到,属性权重根据SVM权重向量
暂无评论