针对朴素贝叶斯算法存在的三方面约束和限制,提出一种数据缺失条件下的贝叶斯优化算法。该算法计算任两个属性的灰色相关度,根据灰色相关度完成相关属性的联合、冗余属性的删除和属性加权;根据灰色相关度执行改进EM算法完成缺失数据的填补,对经过处理的数据集用朴素贝叶斯算法进行分类。实验结果验证了该优化算法的有效性。