为了检测精煤的低位发热量,采集了150个精煤样品的近红外漫反射光谱,采用主成分分析(PCA)结合不同光谱预处理方法,建立了基于马氏距离剔除异常样品后的定量数学模型,同时与工业上的检测结果进行对比。结果表明:经过多元散射校正处理后的模型效果最优,相关系数达到0.909,校正集均方根误差为0.001 31,交叉验证均方根误差为0.001 62;之后采取PCA方法对光谱的数据降维,提取了前三个相关样本的主成分,发现其累计方差贡献率为93.786%,表明模型具有较高的稳定性和预测能力,为精煤低位发热量的近红外漫反射光谱分析技术提供了有效的数据处理方法。