针对高分辨率可见光图像中的道路和桥梁目标,提出了一种基于区域生长的道路和桥梁自动识别的方法。利用区域生长对原始图像进行粗分类,有效去除利用Canny算子进行边缘检测后得到的“弱边缘”,然后利用规则去除无效线段,再检测平行线,对不连续的线段进行连接,最后根据目标模型的特征标识出道路和桥梁目标。实验结果表明,在不需要人工干预的条件下,该方法能够快速有效地自动识别出道路和桥梁目标。2182007,43(16)Computer Engineering and Applications计算机工程与应用4实验结果与分析5结论这里已经用VC++6.0实现了本文提出的识别方法,实验本文针对高分辨率可见光图像中的道路和桥梁目标,提出所用微机配置如下:1.7 Ghz CPu.512M内存。实验数据选用了一种全自动的识别方法,结合道路和桥梁目标都为线状目标了10幅8.5m分辨率下的可见光图像,共有主干道路48条,且具有类似的纹理特征这一特点进行识别。实验表明,该方法桥梁目标27座。在全自动识别的情况下,正确识别出道路44比只对道路或者桥梁某单一目标进行识别的方法具有更高的效率和更好的可扩展性。基于区域生长的粗分类有效地去除了条,正确率为92%,识别出虚假道路3条,虚警率为6%;正确Canny算子边缘检测时得到的“弱边缘”,大大降低了识别的虚识别岀桥梁目标25座,正确率为93%,识别岀虚假桥梁1座警率。检测平行线比用动态规划的方法跟踪线状目标速度快且虚警率为4%。所选用的实验数据大小在500×500~1000×1000准确。道路和桥梁均为交通类目标,对其一体的识别也为未来之间,算法所需的半均时间在0.5s-2s之间。交通类目标一体化的识别奠定了基础,并提供了良好的思路大量实验表明本文所提出的方法是有效的。图3给出了部(收稿日期:2006年12月)分识别结果及其中间结果。参考文献[1] Merlet N, Zerubia I New respects in line detection by dynamicprogramming. IEEE Transaction on Parttern Analysis and MachineIntelligence,1996,18(4):426-431.[2] Wessel B, Wiedemann C, Ebner H.The role of context for road(b(c)extraction from SAR imagery[J. IEEE International Conference onGeoscience and Remote Sensing Symposium, 2003, 6: 21-253 Steger C, Glock C, Eckstein W, et al. Model-based road extractionfrom images[ C//Automantic Extraction of Man-Made Objects fromAreial and Space Images, Basel, Swizerland, 1995: 275-2844]张荣,王勇,杨榕IM图像中道路目标识别方法的研究遥感学报,(d)2005,9(2):220-224图3实验结果图像[5 Trias-Sanz R, Lomenie N Automatic bridge detection in high-re其中图3(a)为原始图像;图3(b)为梯度增强后的图像,通solution satellite images[ C)/3rd International Conference on Com过梯度增强使得图像中的边缘信息更加突显出来;图3(c)为puter Vision Systems, 2003 172-181[6 SU Fulin, ZHU Yong, GE Hongtao. An algorithm of bridge detection用 Canny算子提取边缘后的图像,得到的图像中边缘信息非常in radar sensing images on fractalJ. IEEE International Conference丰富,图像中的“弱边缘”也被检测出来;图3(d)为通过区域生on Microwave and Millimeter Wave Technology Proceedings, 2002长去除“弱边缘”后的边缘图像,可以看到,经过区域生长,去除7] Vergnet R I, Saint-- Marc p, Jezouinj L. A Generic bridge finder[C]了大量的¨弱边缘”,并且很好地保留了有用的边缘信息;图3(e)// Automated CAD-Based Vision, Workshop on Directions, 1991:176-185为无效线段去除和检测平行线后得到的图像,线状目标的边缘[8 Marr D. Vision-a computational investigation into the human repre-基本上被识别出来;图3(f)为最终的识别结果图像,白色线条sentation and processing of visual information[M]. San Francisco表示道路目标,黑色线条表示桥梁目标。Freeman. 1982. 10-12(上接164页)[4] Mauro Andreolini, Emiliano Casalicchio A cluster-based Web sys-间,提高了系统的吞吐率。WRR是解决网络QoS的经典分组tem providing differentiated and guaranteed services [J).Cluster调度算法,但在复杂的网络环境中,特别是在集群服务器中,Computing, 2004: 7-19WRR还存在非常多的不是。本文提出的算法针对WRR存在5AmnM, Druschel F, Zwaenepoel w Cluster reserves: A mechanism的缺陷,结合网络访问的自相似特征,增加了有效的接纳控制for resource management in cluster-based network servers[J]. Pro机制,因此具有一定的实用价值。(收稿日期:2006年8月)ceedings of ACM Sigmetrics 2000, Santa Clara, CA, June 200016 Teo YM, Ayani R. Comparison of load balancing strategies on clus-ter-based Web server[J].Transactions of the Society for Modeling参考文献and Simulatin. 2001[] Lin Chuang On Qos control of multimedia information networks [J]. [7] Crovella M E, Bestavro S A Self-similarity in world wide web traf-Journal of Software, 1999, 10(10): 1016-1024fic: evidence and possible causes [J.IEEE/ACM Transactions on2] Cardellini V, Casalicchio E, Colajanni M, et al. The state of the artNetworking,1997,5(6):835-846in locally distributed Web server systems [J]. ACM Computing Sur-[8]Li Jing-cong, Li Zheng-bin Queuing performance analysis with selfveys,2002,34(2similar network traffic[ J].Acta Scientiarum Naturallium Universitatis[3 Liao Xiaofei, Jin Hai. A new cluster-based distributed videoPekinensis,2002,38(5):919-722record server[C/Proceedings of 2003 IEEE International Confer-[9 Wang Yu, Zhao Qian-chuan TCP congestion control algorithm onence on Multimedia Expo(ICME03): IEEE Signal Processingself similar traffic network[J]-Journal of China Institute of CommuSociety, July 6-9, Baltimore, Maryland, USA, 2003, 3: 249-252nications,2001,22(5):31-38