高频链矩阵整流器拓扑结构pdf,高频链矩阵整流器通过三相一单相AC/AC矩阵变换器与高频链结合并经由单相整流电路组合而成,自提出以来己获得长足发展。首先介绍了几种典型的高频链矩阵整流器拓扑结构,并重点分析比较了其高频调制策略,其中双极性电流空间矢量调制策略显示了较佳的综合性能。随后从控制方法和换流策略2个角度,系统回顾了高频链矩阵整流器的研究现状,并指出亟待解决的关键性问题。最后对其应用前景进行了展望,所述内容可为高频链矩阵整流器的研究提供一定的理论基础与技术参考。第41卷第3期电网技术971i,(bc)(ba)i2(ac)daci0i,(ca)ii(ab)i(cb)图4六扇区的划分及空间矢量合成图5三相_单相AC/AC矩阵变换器的拓扑解耦Fig 4 Six sectors division and space vector synthesisFig 5 Decoupling of the three-phase to single-phasedo,其中m为虚拟整流级周制比1920,O为参考电AC/AC matrix converter流欠量夹角。成正向电压Up,而导通蓝色负向开关可合成负向电dab=me sin(T/6-01)压Un。为得到正负交变的输出电压,将单个开关周dac ms sin(a/6+0i(1)期分为前后半周期,通过拓扑解耦,在前后半周期分别控制正向和负向开关,得到相应的正向和负向经空间矢量调制后,虚拟整流级可输出六脉动电压2直流。虚拟直流电压幅值Um满足下式,其中,U1依据二三相一单相ACAC矩阵变换器输入电压欠为输入电压幅值。量un、lb、u绝对值的平均值大小将其分为12个区间,在每个区间内休证各相绝对值均值大小顺序虚拟逆变级通过PWM调制策略,将开关频率不变2,见图6。在每个开关周期内,绝对值均值设为期望的输出电压频率则可得到单相高频交流最大相所连接的开关一直导通,次大相所连接的开电。输出电压幅值U。满足关先导通,最小相所连接的开关后导通。在前半周Uo=1.5m11U71=1.5m(3)期导通相应的正向开关,即合成正向电压,在后半式中m、m分别为虚拟逆变级和实际电路调制比。周期导通相应的负向开关,即合成相反的电压,最通过调节m、m、即可调节输出电压的幅值。终在高频变压器两端得到正负交变的电压2。将虚拟整流级和逆变级协调配合2,得电氐Uo =FF Ui= FrU其中W3FI式中:U1、U分别为三相-单相AC/AC矩阵变换器的输入、输出电压矢量;F1、FF分别为虚拟逆变级、虚拟整流级和实际电路的转换矩阵;开关信号Sv1Sw、S-S6、SSa在对应开关导通时取图6区间划分示意图1,关断时取0。通过上述虚拟整流-逆变方法,分Fig 6 Interval division schematic别得到相应的开关动作信号,再根据式(4)实现两虚以第1区问为例,始终保持输入相电压绝对值拟级的统一,实现最终的调制目的。均值满足>ψ≯。在前半周期,与a相所连接2.2基于绝对值逻辑SPWM调制策略的开关Sa一直导通,b相所连接开关Sbn+先导通,基于绝对值逻辑SPwM调制策略,通过拓扑c相所连接开关Sm后导通,即在前半周期导通相解耦的方式,根据输入电压绝对值大小关系,经常应的正向开关得到输出电压Uh、Lmec在后半周期,规SPwM完成调制得到正负交变的电压。相对于与a相所连接的开关San-一直导通,b相所连接开棊于虚拟整流-逆变的PWM调制策略,便于硬件关S先导通,c相所连接开关Sp后导通,即在后电路实现,但电压利用率较低。半周期导通相应的负向开关得到输出电压-ab、将三相-单相ACAC矩阵变换器进行拓扑解由于开关频率远大于电源频率,故在一个开耦,见图5。红色部分为正向开关,通过其导通合关周期内,电压值可视为恒定。972王辉等:高频链矩阵整流器的研究综述ToL. 41 No. 32.3双线电压调制策略Ts/2双线电压调制策略是一种根据任意瞬时2个输角载波入线电压直接合成输出电压的调制方法,在输入电laloba压畸变的情况下仍输出稳定的电压Tlalo如图4进行扇区划分,以第Ⅰ扇区为例,在一个开关周期T内,输出电压分为8段,依次为Ua、图8载波周期与开关矢量关系Fig 8 Relationship between arried period andUab、Ua、Uba、Ua、Uls、Ua、Uca(电压下标表示switching vector与输出端相连的输入相导通,例Um表示Sn、 Sbn t.、T,如式(6),故形成正负交变的高频电2导通,如图3(a),其中Um和Uba导通时间相同为Tab=lba -msin(T/6-01)75/2Tb,Uc和U导通时间均为T,Ua导通时问为Tac =fa =msin(T/6+B rs!2T。三相-单相ACAC矩阵变换器输出电压的波形To =Is/2-Tab -T见图7。参考电流矢量位于I扇区的详细说明见图9电压前半周期,选择矢量i(ab),三相一单相AC/AC矩To T ToI T ITo T ToI T阵变换器输出电压为U妣,电流为础b。选择欠量aa Cab Ca UUe Caucaif(ac),输出电压为Uae,电流为Ine;后半周期,选择矢量i(ba),输出电压为Uba,电流为-ab。选择图7三相单相ACAC矩阵变换器的输出电压波形矢量k(ca),输出电压为U,电流为lFig. 7 Output voltage wavcform of the thrce-phasc tosingle-phase ac/aC matrix converter假设前半周期电流、电压方向为正方向,则后根据式(5)计算导通时间吗,mh(O)、O为输入半周期形成负向电流、电压,也即合成正负交变的相电压的瞬时值。相-单杆AC/AC矩阵变换器Db=m|t2()/U1|T/2aT=ml2(t)1|7s/2(S)C7=7/4-Tb/2-T。/2:双线电压调制策略抗干扰性较好,在输入电压(a)前半周期,选择矢量iab发生畸变的情况下,仍能休证输岀稳定,且不増加相-单相ACAC矩阵变换器算法的复杂度。理论上可获得单位功率因数,具有良好的变换能力。但该调制箦略中功率因数不可调,无法在某些情况下对网侧进行无功补偿,适宜b负载变换不人的场合p22.4双极性电流空间矢量B-C-SVM调制策略(b)前半周期,选择矢量i(ac)基于绝对值逻辑的SPWM调制策略易于硬件三相-单相ACAC矩阵变換器La实现,但电压利用率低;而基于虚拟整流-逆变的PWM调制策略,将电路等效为两级增加了调制的复杂性;双线电压调制策略在网侧畸变时性能良:好,但功率因数不可调且不适宜大负载变化。目前,釆用双极性电流空间矢量B-C-SⅥM调制策略是(c)后半局期,选择矢量iba)种比较简便优化的方式27。相-单相ACAC矩阵变换器L米用图4的扇区划分,如图8将三角载波分为前后半周期,以参考电流欠量位于I扇区为例。前半周期采用SVM方法,由其所处扇区相邻2个有效开关矢量i(ab)、i(ac)及零矢量合成,输出电流为lab、la、lo,对应导通时间为Ta、Ta、7o后半(d)后半期,选择量i(ca)周期选择与前半周期相反的矢量i(ba)、i(ca)及零图9双极性电流空间矢量调制方法示意图矢量,输出电流为ha、la3、l,对应导通时间为ftaFig9 Schematic of B-C-SVM第41卷第3期电网技术973高频交流。从调刽性能和复杂程度上比较,双极性电流空间矢量B-C-SVM调制策略更适合三相一单T相ACAC矩阵变换器2.5调制策略比较及研究前景高频链矩阵整流器的调制策略是保证电路运调[叫P行的关键和难点。针对上述几种调制策略仨复杂度、电压利用率、抗干扰性以及功率因数方面进行图10间接电流控制框图Fig. 10 Block diagram of indirect current control比较,结果见表1。控制,该方法易受主电路参数变化的影响;且当网表1不同调制策略比较侧电压发生畸变时,低次谐波含量增加,甚至影响Tab 1 Comparison of different modulation strategies调制策略复杂度电压利用率抗干扰性功率因数其稳态和动态性能导致网侧电流产生震荡。但某些基于虚拟整流一逆变PWM高调工业领域,如感应加热,主要需要直流控制特性和基于绝对值逻辑的SPWM低高低高高弱强中可词网侧单位功率因数控制,枚采用相对简单的间接电双线电压低不可调流控制方法即能满足工程需要双极性电流空间矢量3.2直接电流控制各国学者针对上述几种调制策略的优化改进直接电流控制采用双闭环控制,见图11,外环主要集中在以下方面为直流电压控制环,将输出电压给定值U。与检测1)提高算法电压利用率和调制宽度,降低算量Ua比较,通过P控制器调节得到d轴电流(有功法复杂度。如文献[30中采用双板性电流空间矢量电流)给定值动d,以实现低纹波直流电压的稳定控调制优化算法可使电压传输比达到并超过1,大大制。当其为单位功率因数时,q轴给定值iq=0。内提高了电压利用率。环为电流控制环,d轴电流给定值与检测值isd、i2)提高算法的抗十扰能力,在输入非对称、的差值通过PI控制器输岀后经相应的调制策畩形琦变的情况下,保证稳定输出。文献31对比了成脉冲触发信号,从而完成电路的控制。相对于闩体化和解结耦SPWM调制算法下系统对不平衡输接电流控制,直接电流控制可使内环电流快速跟随入电压的抑制效果3)降低开关损耗,解决尖峰电压问题,提高给定值的变化2运行效率。文献[32]采用混合脉宽调制策略,严格限制零电压阶段动作以平抑尖峰电压。4)降低交流侧谐波畸变率,缩小交流侧滤波器尺寸;降低直流侧的电流纹波以缩小直流侧滤波器体积33高频链矩阵整流器的控制方法. PlHFLMR网侧电流控制策略可分为间接电流控制和直接电流控制。直接电流控制性能良好,电流图11直接电流控制框图可迅速跟随给定值变化,对主回路参数的鲁棒性较Fig 11 Block diagram of direct current control好。间接电流控制易受主电路参数变化的影响,但直接电流控制具有良好的控制性能,电流响应实现简单,适用于控制精度要求低的场合3。本速度快,对主回路参数具有较强的鲁棒性。由于其文以图1(a)结构为例进行说明。需要检测网侧电流,控制较复杂、成本较高,适用3.1间接电流控制于有功和无功独立控制的高精度应用场合。输出电压给定值U。与检测值U比铰后,经33控制方法研究前景PI控制器得到电流给定值r。将电流检测值l与给HFLMR作为矩阵变换器的衍生电路,对其高定值比较后经P控制器得到相应的调制比m。通性能控制技术的研究还处于初级阶段。文献[36]采过调制即可得到相应的脉冲触发信号,完成对输出用预测控制方法提高系统动态响应速度;文献[37]电压的控制,见图10研究适用于未链接高频变压器的矩阵整流器滑模间接电流控制实质上是一种网侧电流的间接变结构控制,相较于PI控制其直流纹波更小且对参974王辉等:高频链矩阵整流器的研究综述l.41No.3数有较强的鲁棒性;文献[38]硏究基亍开关损耗的冋时有一半的儿率是臼然换流,故该换流乂被称为控制策略改进算法,提髙其能量和玏率密度。为提升半软两步換流或半自然两步换流。此外,因开关关其整体性能,控制技术的研究应集中在以下几点:断时间远大于开关导通时间,可将开关导通和关断1)减小网侧谐波畸变率,满足并谐波婓求,合成一步,简化为一步换流策略2降低谐波损耗问题。4.2四步换流2)调节功率因数使其根据指令实现对网侧的由 N Buran所提出的四步换流也属于半软开无功补偿关换流,每次换流可实现一次零电流零电压关断和3)减小直流侧纹波系数,提高直流侧电压质次零电流导通。相比于两步换流中,在需要导通量。提高系统动态性能,实现响应的快速性。的双向开关中,只导通必须导通的单向开关,而不4)降低开关损耗,提高转换效率、能量密度导通另一单向开关;四步换流策略在需要导通的与功率密度。双向开关中,该双向开关的2个开关均会导通。下4高频链矩阵整流器的换流策略面举例说明换流的具体过程1。um表示Sn、Sm和San+、Sm均导通的电压。la表示Sap+、Smp和Sm+、换流是电流从一个支路向另一个支路转移的Sm均导通的电压。过程。换流安全决定其能否正常工作,也是衡量换从va换流到la过程为流损失(电压幅值下降、电流畸变、相移、噪声、转1)开通Smn,ux>l,故没有电源短路危险。矩脉动)的重要依据之一。约束条件为输出线路不断2)关断Sa,此时Sbn已开通所以无论变压器路和输入线电压不短路初级电流是否和参考方向一致,都具备了电流的流同常規矩阵变换器一样, HFLMR的换流可采通路径。用死区换流、交叠换流、辅助谐振换流、两步换流3)开通Sn,此时San已关断,没有电源侧短和四步换流。由于前3种换流策略均不安全或不路的威胁实用,两步换流和四步换流较为常用。4)关断San+,换流结束。4.1两步换流高频链矩阵整流器的调制策略会影响换流策两步换流策略最早由 Svensson.T所提出,在需略的选择,而常用的两步换流和四步换流又可以分要导進的双向开关中,只导通相应必须导通的单向为电流型和电压型换流。电流型换流的使件成本较开关,而不导通另一单向开关。当两输入相间进行高同时复杂的检测电路会影响换流可靠性。电压型换流时,在需要导通的双向开关中只导通必须导通换流成本较低,允许在轻载或空载条件下运行,但的单向开关,保持另单向开关处于关断状态,然对电压接近时换流技术要求较高。文献41基于助后关断上一处于导迅状态的双向开关中导通的单率损耗对换流策略进行比较并对四步换流策略进向开关。行详细说明。文献[42探讨因换相延迟造成的波形以双向开关采用图2(a)结构为例,对换流进行失真问题,并提出最小化换相延迟方案。文献[43]说明,见图5。用b表示Sb-和Sm导通的电压;提出的2/3步新型换流策略,实现了功率密度和可4ab表示Sp和Sb导通的电压。t+表示Sap+和Sn+靠性的折中优选。总之,对高可靠性、低损耗、低导通的电压。具体换流过程举例如下成本的安全换流方式的研究将直接影响 HFLMR的1)从b换流到uab过程商业化进程①1)驱动San,由于输入相电压ux>tb,电流自然换流至Sp5应用2关断Sp,此时电流已换流至Sap+,Sp实现由于髙频链矩阵整流器在宽负载范围下可达软关断。到单位功率因数且功率因数可调,无直流储能环2)从La+换流到ac过程。节,省去母线电谷,使得结构紧凑,能量可双向流①驱动Sm,若输入相电压u1>,电流自然换动,实现真正的四象限运行,有着极大的研究深度流至San+,否则依然流过Sbn+和应用前景。②关断Sn,若t>Le,电流已换流至Scn-,Sbn在风力发电系统中,采用 HFLMR的直流实现软关断,否则电流将强迫换流至Sn风电机组输岀端口串联后可直接进行高压直流输对于两步换流策略,有一半的几率是软关断,电4,该结构缩减变压器的体积且节省母线电第41卷第3期电网技术975容。同时可完成无功和有功功率的独立控制,实现Conference on Instrumentation and Measurement, Computer,最大风能跟踪,有利于电网稳定运行Communication and Control. Qinhuangdao, China 2015 FifthHFLMR作为新型双向充电拓扑在电动汽车Computer, Communication and Control, 2015: 433-458V2G技术应用中已展露头角。综合考虑电网发布4 Manias s,.4 gas PD.An0 ovel sinewave in AC to DC converter with的功率需求和电网市价以及网侧性能参数,结合电high-frequency trans former isolation [J]. IEEE Transaction onIndustrial Electronics, 198.5, 32(4): 430-438动汽车的运行状态、出行安排以及电池电量,完成51NiHs, RamchandDR. A new switching algorithm for an AC-ACV2G功能474。采用图1(b)所示结构的 HFLMR,converter with high frequency link(CHECON 4lst Annual实现能量的双向流动,完成电量不足时电池的充电Confcrcncc of the IEEE Industrial Electronics Socicty. Yokohama以及在电N负荷过高时向电网馈电的功能。相较于22:E,05:4540[6] Ratanapanachote S, Cha H J. A digitally controlled switch mode传统拓扑,简化了结构,缩减体积,各国学者正纷power supply based on matrix converter[J]. IEEE Transaction on纷对其进行更深入的研究。Power Electronics, 2006, 21(1):124-130.Krishnamoorthy H S. A matrix convertcr-based topology for high在通信电源供电以及大型供电系统中,可通过vehicle hattery charging and简单的控制输出稳定的直流电压且满足单位功率application[C]'IECon 2012 38th Annual Conference on IEEE因数输入,该技术已完成样机的制作Industrial Electronics Society. Montreal, QC, Canada: IEEE, 20122866-2871利用其功率因数可调的特点,可将 HFLMR应8 Garcia-Gil R, Espi J M. An ALL-digital controlled AC-DC matrix用于电路功率因数的校正167。通过三相-单相converter with high-frequency isolation and power factorAC/AC矩阵变换器和单相三相AC/AC矩阵变换correction[C]/2004 IEEE International Symposium on IndustrialElectronics. Istanbul, Turkey: IEEE, 2004: 1075-1080器与高频变压器链接后可构成性能良好的电力电9]程启明,黄伟.基于双级短阵变换器的永磁风力发电LVRT及稳子变压器。据文献[50,其可与电压型PWM逆定性分析[口网技术,2016,4(7):2059-2066.变器组成性能优良的双级ACAC矩阵变换器,用Cheng Qiming, Huang Wei. LVRT of permanent magnet windgeneration based on two stage matrix converter and system stability」交流传动调速等领域,提高发电机和转换器的analysis[J]. Power System Technology, 2016, 40(7):2059-2066(in效率。Chinesc)各国学者对 HFLMR的研究,多处于理论分析 Yan Zhaoyan, Thang Kun, SPWM modulation strategy study ofAC/DC matrix converter with high frequency isolation[C]/2008和仿真实验阶段,虽未实现产品化,但实验样机的Intemational Conference on Electrical Machines and Systems. Wuhan成功制作已证实该项技术的可行性,随着研究的深China: 2008 International Conference on Electrical Machines andSyste2008:3789-3792入, HFLMR将有广阔的应用前景。[]l许柏宏.矩阵式ACDC变换器斫究与实现[D.南京:南京航空6结论航天人学2」文锋,姜久春.基于矩阵变换器的ACDC变换器山.电工技术学本文从拓扑结构、调制策略、控制方法以及安报,2009,24(3):128-131.仝换流4个方面对高频链矩阵整流器进行了综述Wen Feng, Jiang Jiuchun. AC/DC converter based on matrixconverter[]. Transactions of China Electrotechnical Society, 2009在海上风力发电系统、电动汽车V2G技术以及大24(3): 128-131(in Chinese型供电系统等方面,高频链矩阵整流器都有广阔的邙3 Vlatkovie v. A zero-voltaε re switched, three-p- nase isolation PwM应用前景。相较于传统隔离型整流器,高频链矩阵buck rectifier[J]. IEEE Transaction on Power ElectronicS, 1995, 10(2)148-15′整沆器还存在调制控制复杂、换流安全等问题,但141 SinghaK,DasP. A novel matrix based isolated three phase AC-DC随着国内外学者对其研究的不断深入,其作为新兴converter with reduced switching losses[C] /2015 IEEE Applied变频技术的地位不容小觑Power Electronics Conference and Exposition(APEC). Charlotte, NC,USA:IEEE,2015:1875-1880参考文献[15] Inoue K, Shioda M. Space vector modulation based un virtual indirecontrol for high frequency AC-linked matrix converter[C]/2014ll Gyugyi L, Pelly B R. Static power frequency changers IM. NewIntemational Power Electronics Conference. Hiroshima, Japan: 2014York John Wiley& Sons Inc, 1976: 1-442Intemational Power electronics Conference, 2014: 130-137[2] Itoh jI, Oshima r. Experimental verification of high frequency link[6]杨喜军.矩阵变换的理论与应用[M.北京:机械工程出版社,DC-AC converter using pulse density modulation at secondary matrix2010:1-26converter[C]/The 2014 International Power Electronics Conference[171 Rodriguez J, Rivera M. A review of control and modulation methodsHiroshima, Japan: The 2014 International Power Electronicsfor matrix converters[J. IEEE Transactions on Industrial ElectronicsConference, 2014: 1021-102012,59(1):58-70[3] Yan 7.Y, Xu X M. A novel SVM control strategy for a single-phase18] Behrangi F, Dastfan A. A DC power supply based on matrix converterhigh frequency link matrix rectifier[C]/2015 Fifth Internationalwith reduced number of switches[C]/2008 IEEE Intemational976王辉等:高频链矩阵整流器的研究综述ToL. 41 No. 3Conference on Industrial Technology Chengdu, China: IEEE, 2008[31] Zhaoyang Yan, Ruixue Li. Modeling and control of high frequencylink three-phase four-leg matrix converter Industrial Electronics[1!]严干贵,钟诚.多电平电流源变流器研究综述[]电网技术,2015,Society[c]//2013-39th Annual Con ference of the iEFF on Industrial39(7):1940-1947Electronics Society. Vienna, Austria: IEEE, 2013: 4886-4891Yan gangui, Zhong Cheng. Review of multi-level current source[32]郑连清,黄金汲,三相高频链矩阵式逆变器的SPwM混合调刽策converters research[J]. Power System Technology, 2015, 39(7)略研究「华北电力大学学报,2012,39(2):8-1l,221940-1947(in Chincse)Zheng lianqing, Huang Jinbo. Research on integration SP[20]邓文浪,刘和.基于新型空间矢量调制簽略的双输出-双级矩阵变strategy for thrcc-phasc inverter bascd on high frcqucncy linked换界研究[.电网技术,2014,38(12):3470-3476.matrix converter[J]. Journal of North China electric Power UniversityDeng Wenlang, Liu He. Research of dual-output TSMC based on2012,39(2):8-11,22( in Chinese)novel space vector pulse-width modulation strategy[J]. Power System33 Su Mei, Wang Hui. AC/DC matrix converter with an optimizedTechnology, 2014, 38(12): 3470-3476(in Chinese)modulation strategy for V2G applications[J]. IEEE Transactions on2l」李生民,李杨.抑制电网异常的高电压传输比矩斗变换器J.电Power Electronics, 2013, 28(12): 5736-5745网技术,2010,34(10):115-12034」刘晓.ACC矩阵变换器调制与控制策略的研究[D.济南:山东Li Shengmin, Li Yang. High voltage transfer ratio matrix converter大学,2010capable of enduring abnormal conditions in power grit. Power[35]刘和半,斌斌,电淯型脉倇调钊整流器间接电控改进策璐System Technology, 2010, 34(10): 115-120(in Chinese)[J电网技术,2012,36(6):182-187[22 Zhaoyang Yan, Minli Jia. An integration SPWM strategy forLiu Heping, Qiu Binbin. An improved indirect current control strategyhigh-frequency link matrix converter with adaptive commutation infor current source PWM filter]. Power System Technology, 2012one step based on de-re-coupling idea[]. IEEE Transaction on36(6):182-187( (in Chinese)Industrial Electronics, 2012, 59(1): 116-12836]邓文浪,齐婷婷.基于电流空间矢量预测控制的 HFLMR.电力[23] Koiwa K, Itoh J I. Improvement of waveform for high frequency系统保护与控制,2013,41(14):108-114.AC-linked matrix converter with svm based on virtual indirectDeng Wenlang, Qi Tingting. Research of high frequency link matrixcontrol[C]/2015 IEEE Applied Power Electronics Conference andrectifier based on current space vector predictive control[]. PowerExposition(APEC) Charlotte, NC, USA: IEEE, 2015: 3359-3366System Protection and Control, 2013, 41(14): 108-114(in Chinese).24」 Jianxia li, Zhaoyang Yan. Simulation study of single- phase「37刘晓,张庆沱.矩阵式整流器凶滑模变结构控制[η.也工技术学high-frequency link matrix converter based on single-cycle inner loop报,2013,28(4):149164.control[C]/2015 Fifth Intermational Conference on InstrumentationLiu Xiao, Zhang Qingfan. Sliding mode variable structure control ofand Measurement, Computer, Communication and Controlmatrix rectifiers[]. Transactions of China Electrotechnical SocietyQinhuangdao, China: 2015 Fifth International Confere2013,28(4):149-164 in ChineseInstrumentation and Measurement, Computer, Communication and [38] Singh A K, Das P. A novel matrix converter based isolated threeControl,2015:147-15lphase AC-DC converter with reduced switching losses[C]/2015 IEEE[25 Yan Z Y, Zhang k. A novel absolute value logic SPWM controlApplied Power Electronics Conference and Exposition. Charlottestrategy based on de-re-coupling idea for high frequency link matrixNC,USA:IEEE,2015:1875-1880rectifier[J]. IEEE Transactions on Industrial Informatics, 2013, 9(2): [39] Schulte T, Schroder G. power loss comparison of diffcrent matrixconverter commutation strategies[C], Power Electronics and Motion[26]徐志强,李娜.矩阵变换器双电压合成控制策略抗电网扰动性能Control Conference. Novi sad, Serbia: Power Electronics and Motion分析,电网技术,2008,32(13):4549Control Conference, 2012: 91-96Xu Zhiqiang, Li Na. Analysis on anti-power system disturbance [140] Ejea J B, Sanchis-Kilders E. High-frequency bi-directionalperformance of dual line to line voltage synthetic control strategy forthree-phase rectifier with power factor correction[c]/32nd IEEEmatrix converter[]. Powcr Systcm Tcchnology, 2008, 32(13)Annual Power Electronics Specialists Conference. Vancouver, BC45-49(in Chinese)Canada:IEEE,2001:1303-1307[2刁]龙美志,邓文浪.基于新型两步换流旳高频链短阽整流器控制[41 Schulte T, Schroder G. Power loss comparison of different matrix电力自动化设备,2013,33(10):130-13converter commutation strategies[C]/ Power Electronics and MotionLong Meizhi, Deng Wenlang. Based on the new two-stepControl Conference. Novi sad, Serbia Power Electronics and motioncommutation frequency link matrix converter control[J].ElectricControl Conference, 2012: 91-96Power Automation Equipment, 2013, 33(10): 130-135(in Chinese[421 Safari S, Castellazzi A. Influence of commutation delay on waveform[28 Holtsmark N, Molinas M. Matrix converter cfficicncy in a highdistortion in high trequency SiC matrix converter[C]/7th IElfrequency link offshore WECS[C]/2011-37th Annual Conference onIntemational Conference on power electronics, machines and drivcIEEE Industrial Electronics Society. Melboume, VIC, australiaManchester, England: 7th IFT Tnternational Conference on PowerEEEE,20l1:1420-1425Electronics, Machines and Drives, 2014: 1-6[29] Garces A, Molinas M. Modulation features of a high-frequency[43] Sebastian Krauss, Normann Schwingal. Investigation of a 2/3-stepconversion system for wind farm application[C]//2012 3rd IEEEvoltage-based commutation method for matrix converters[C]//27thInternational Symposium on Power Electronics for DistributedAnnual IEEE Applied Power Electronics Conference and ExpositionGcncration Systcms(PEDG). Albor, Denmark: IEEE, 2012: 101-105Orlando, FL, USA IEEE, 2012: 397-404[3〕]邓文浪,龙美志.高频链TSMC的双极型空间矢量调制叮.电机44]邓文浪,蒋卫国.基于精简矩阵变换器的串联多端海上风电-HVDC与控制学报,2013,17(11):75-82系统协调电网技术,2014,38(5):1143-1149Deng Wenlang: Long Meizhi. Bipolar space vector pulse-widthgJiang Weiguo. A coordinated control of seriesmodulation of high frequency link two-stage matrix converter[JImulti-teminal offshore wind power generation-HVDC system basedElectric Machines and Control, 2013, I7(I1:75-82(in Chineseon reduced matrix converter[J]. Power System Technology, 2014第41卷第3期电网技术97738(5):1143-1149( in Chinese)Intemational Conference on Industrial Technology. Cape Town[45] Guoliang Yang, Yanping Zhu. Application of a matrix converter forAfrica:IEE,2013:1880-1885,an system[C]iThe 2nd InternationalSymposium on Power Electronics for Distributed Generation Systems收稿日期:201605-2Hefei, China: The 2nd International Symposium on Power Electronics作老简介for Distributed Generation Systems, 2010: 185-189T辉(1960),男,教授,專士牛导帅,研究方46Ⅰ邓文浪,谢敏,双级矩阵变换器直驱风力发电系统最大风能逅踪向为现代电气自动化技术装备、电力电了与电力传[J电网技术,2012,36(5):73-78动系统和新能源发电控制技术等Deng Wenlang, Xie Min. Astrategy of maximum wind power point tracking for direct-driver孙梅迪(1992),女,硕士,研究方向为电力电System Technology, 2(子与电力传动系统和新能源发电控制技术等36(5):73-78 (in Chinese).Emai;:739326186@qcm[471 Chukwu U C, Mahajan S M. Real-time management of power systems黄守道(1962),男,教授,博士牛导帅,研究方向为风力发电技术、ithv2 j facility for smart: grid applications[J]. IEEE Transactions风电场已能输送及其并网技术、电力电了系统及其控制等,Fmion Sustainable Encrgy, 2014, 5(2):558-566hsd1962(@hnu.edu.cn[48] Zahid Z U, Dalala Z M. Design of bidirectional DC-DC resonant高剑(1979),男,讲师,研究方向为风力发电变流系统设计、特种converter for vehicle-to-grid(V2G)applications[]. IEEE TT电机电磁场分析及设计等,E-mai:Gj2520596 Sina. com;on Transportation Electrification, 2011, 1(3): 232-244李幸(1988),女,助理教授,研究方向为矩阵变换器技术以及风力[49 Inoue K, Shioda M. Space vector modulation based on virtual indirect发电等,E-mail: Lxhnu ahnucdu. cn。control for high frequency AC-linked matrix converter C//2014(责任编辑徐梅International Power Electronics Conference. Hiroshima, Japan: 2014International Powcr Electronics Conference, 2014:130-137[50] Soeiro T B, Jappe T K. Bidirectional delta-switch indirect matrixconverter: topologies and modulation strategies[C]/ 2013 IEEE