目前入侵行为有多样化和复杂化的趋势,如何快速准确地检测出新未知类型的攻击已成为研究焦点。文章将增量式学习引入支持向量机中,巧妙将粗糙集的属性约简与增量式支持向量机较强泛化能力相结合,建立一种基于RS-ISVM的网络入侵检测系统模型。并充分利用广义KKT条件作为判断标准,来提高分类的精度和节约训练时间,经理论分析和实验阐明了该组合模型对入侵检测的有效和合理性。