中文命名实体识别在多个重要领域有广泛的运用,提出一种基于转移学习的算法进行中文命名实体识别,旨在提高识别的准确率和召回率。基于转移学习算法的中心思想是开始以一些简单的结论应用于问题,然后在每个步骤应用转换,选择出每次转换的最优结论再次应用于问题,当选择的转换在足够的空间内不再修改数据时算法停止。提出算法的规则模板和约束文件的获取方法,形成一个完整的用于中文命名实体识别的模型,并利用该模型进行实验,获得了较好的结果。