斯坦福大学-机器学习公开课课件.rar
斯坦福大学的机器学习公开课课件 Lecture notes 1 (ps) (pdf) Supervised Learning, Discriminative Algorithms Lecture notes 2 (ps) (pdf) Generative Algorithms Lecture notes 3 (ps) (pdf) Support Vector Machines Lecture notes 4 (ps) (pdf) Learning Theory Lecture notes 5 (ps) (pdf) Regularization and Model Selection Lecture notes 6 (ps) (pdf) Online Learning and the Perceptron Algorithm. (optional reading) Lecture notes 7a (ps) (pdf) Unsupervised Learning, k-means clustering. Lecture notes 7b (ps) (pdf) Mixture of Gaussians Lecture notes 8 (ps) (pdf) The EM Algorithm Lecture notes 9 (ps) (pdf) Factor Analysis Lecture notes 10 (ps) (pdf) Principal Components Analysis Lecture notes 11 (ps) (pdf) Independent Components Analysis Lecture notes 12 (ps) (pdf) Reinforcement Learning and Control Section Notes Section notes 1 (pdf) Linear Algebra Review and Reference Section notes 2 (pdf) Probability Theory Review Files for the Matlab tutorial: sigmoid.m, logistic_grad_ascent.m, matlab_session.m Section notes 4 (ps) (pdf) Convex Optimization Overview, Part I Section notes 5 (ps) (pdf) Convex Optimization Overview, Part II Section notes 6 (ps) (pdf) Hidden Markov Models Section notes 7 (pdf) The Multivariate Gaussian Distribution Section notes 8 (pdf) More on Gaussian Distribution Section notes 9 (pdf) Gaussian Processes
文件列表
-机器学习公开课课件.rar
(预估有个22文件)
课件
Section notes 5-Convex Optimization Overview, Part II .pdf
197KB
cs229-notes4 Learning Theory .pdf
109KB
cs229-notes5 Regularization and Model Selection .pdf
87KB
cs229-notes3 Support Vector Machines .pdf
176KB
Section notes 6-Hidden Markov Models .pdf
198KB
Section notes 4-Convex Optimization Overview, Part I.pdf
149KB
cs229-notes9 Factor Analysis .pdf
81KB
cs229-notes12 Reinforcement Learning and Control .pdf
74KB
cs229-prob Probability Theory Review .pdf
147KB
用户评论