针对基本蚁群算法在求解过程中容易出现收敛时间过长和陷入局部最优的不足,提出了一种动态自适应的蚁群算法(DSACO),在算法DSACO中改进了算法的重要参数,当算法疑似陷入局部最优时,通过自适应调整参数来提高全局最优解的求解质量和信息量强度;最后在煤炭运输问题上进行实验仿真,结果表明,DSACO算法与基本蚁群算法相比较,加快了收敛速度,提高了全局寻优能力。