Contents Preface to the First Edition xv Preface to the Second Edition xvii 1 Introduction 1 1.1 Array Background 1 1.2 Systems Factors 2 1.3 Annotated Reference Sources 3 1.3.1 Adaptive Antenna Reference Books 5 References 5 2 Basic Array Characteristics 7 2.1 Uniformly Excited Linear Arrays 7 2.1.1 Patterns 7 2.1.2 Beamwidth 9 2.1.3 Sidelobes 11 2.1.4 Grating Lobes 11 2.1.5 Bandwidth 15 2.2 Planar Arrays 17 2.2.1 Array Coordinates 17 2.2.2 Beamwidth 18 2.2.3 Grating Lobes: Rectangular Lattice 21 2.2.4 Grating Lobes: Hexagonal Lattice 23 2.3 Beam Steering and Quantization Lobes 25 2.3.1 Steering Increment 25 2.3.2 Steering Bandwidth 26 2.3.3 Time Delay Deployment 27 2.3.4 Phaser Quantization Lobes 28 2.3.5 Sub-array Quantization Lobes 32 2.3.6 QL Decollimation: Overlapped Sub-arrays 35 2.4 Directivity 36 2.4.1 Linear Array Directivity 36 2.4.2 Directivity of Arrays of Short Dipoles 39 2.4.3 Directivity of Arrays of Resonant Elements 40 2.4.4 Planar Array Directivity 42 References 46 3 Linear Array Pattern Synthesis 49 3.1 Introduction 49 3.1.1 Pattern Formulations 49 3.1.2 Physics versus Mathematics 51 3.1.3 Taylor Narrow-Beam Design Principles 52 3.2 Dolph–Chebyshev Arrays 53 3.2.1 Half-Wave Spacing 53 3.2.2 Spacing Less Than Half-Wave 59 3.3 Taylor One-Parameter Distribution 60 3.3.1 One-Parameter Design 60 3.3.2 Bickmore–Spellmire Two-Parameter Distribution 65 3.4 Taylor N-Bar Aperture Distribution 66 3.5 Low-Sidelobe Distributions 72 3.5.1 Comparison of Distributions 72 3.5.2 Average Sidelobe Level 75 3.6 Villeneuve N-Bar Array Distribution 76 3.7 Difference Patterns 79 3.7.1 Canonical Patterns 79 3.7.2 Bayliss Patterns 81 3.7.3 Sum and Difference Optimization 85 3.7.4 Discrete Zolotarev Distributions 87 3.8 Sidelobe Envelope Shaping 89 3.9 Shaped Beam Synthesis 92 3.9.1 Woodward–Lawson Synthesis 92 3.9.2 Elliott Synthesis 94 3.10 Thinned Arrays 98 3.10.1 Probabilistic Design 98 3.10.2 Space Tapering 102 3.10.3 Minimum Redundancy Arrays 103 4 Planar and Circular Array Pattern Synthesis 109 4.1 Circular Planar Arrays 109 4.1.1 Flat Plane Slot Arrays 109 4.1.2 Hansen One-Parameter Pattern 110 4.1.3 Taylor Circular n¯ Pattern 114 4.1.4 Circular Bayliss Difference Pattern 118 4.1.5 Difference Pattern Optimization 123 4.2 Noncircular Apertures 125 4.2.1 Two-Dimensional Optimization 125 4.2.2 Ring Sidelobe Synthesis 126 Acknowledgment 127 References 127 5 Array Elements 129 5.1 Dipoles 129 5.1.1 Thin Dipoles 129 5.1.2 Bow-Tie and Open-Sleeve Dipoles 136 5.2 Waveguide Slots 139 5.2.1 Broad Wall Longitudinal Slots 140 5.2.2 Edge Slots 145 5.2.3 Stripline Slots 147 5.2.4 Open-End Waveguides 147 5.2.5 Substrate Integrated Waveguide 148 5.3 TEM Horns 149 5.3.1 Development of TEM Horns 149 5.3.2 Analysis and Design of Horns 151 5.3.3 TEM Horn Arrays 152 5.3.4 Millimeter Wave Antennas 153 5.4 Microstrip Patches and Dipoles 154 5.4.1 Transmission Line Model 157 5.4.2 Cavity and Other Models 159 5.4.3 Parasitic Patch Antennas 159 5.4.4 Balanced-Fed Patches 163 Acknowledgments 163 References 163 6 Array Feeds 171 6.1 Series Feeds 171 6.1.1 Resonant Arrays 171 6.1.1.1 Impedance and Bandwidth 171 6.1.1.2 Resonant Slot Array Design 176 CONTENTS ix 6.1.2 Traveling Wave Arrays 178 6.1.2.1 Frequency Squint and Single-Beam Condition 178 6.1.2.2 Calculation of Element Conductance 181 6.1.2.3 TW Slot Array Design 185 6.1.3 Frequency Scanning 188 6.1.4 Phaser Scanning 193 6.2 Shunt (Parallel) Feeds 194 6.2.1 Corporate Feeds 194 6.2.2 Distributed Arrays 196 6.3 Two-Dimensional Feeds 197 6.3.1 Fixed-Beam Arrays 197 6.3.2 Sequential Excitation Arrays 199 6.3.3 Electronic Scan in One Plane 199 6.3.4 Electronic Scan in Two Planes 201 6.4 Photonic Feed Systems 207 6.4.1 Fiber Optic Delay Feeds 207 6.4.1.1 Binary Delay Lines 207 6.4.1.2 Acousto-Optical Switched Delay 209 6.4.1.3 Modulators and Photodetectors 210 6.4.2 Wavelength Division Fiber Delay 211 6.4.2.1 Dispersive Fiber Delay 211 6.4.2.2 Bragg Fiber Grating Delay 212 6.4.2.3 Traveling Wave Fiber Delay 212 6.4.3 Optical Delay 213 6.4.4 Optical Fourier Transform 213 6.5 Systematic Errors 214 6.5.1 Parallel Phasers 214 6.5.2 Series Phasers 215 6.5.3 Systematic Error Compensation 216 Acknowledgments 216 References 216 7 Mutual Coupling 221 7.1 Introduction 221 7.2 Fundamentals of Scanning Arrays 221 7.2.1 Current Sheet Model 221 7.2.2 Free and Forced Excitations 223 7.2.3 Scan Impedance and Scan Element Pattern 225 7.2.3.1 Transmit versus Receive SEP 228 7.2.3.2 Measurement of Scan Impedance 233 7.2.4 Minimum Scattering Antennas 233 7.3 Spatial Domain Approaches to Mutual Coupling 235 7.3.1 Canonical Couplings 235 7.3.1.1 Dipole and Slot Mutual Impedance 235 7.3.1.2 Microstrip Patch Mutual Impedance 239 7.3.1.3 Horn Mutual Impedance 241 7.3.2 Impedance Matrix Solution 242 7.3.3 The Grating Lobe Series 244 7.4 Spectral Domain Approaches 246 7.4.1 Dipoles and Slots 246 7.4.2 Microstrip Patches 258 7.4.3 Printed Dipoles 261 7.4.4 Printed TEM Horns 262 7.4.5 Unit Cell Simulators 266 7.5 Scan Compensation and Blind Angles 266 7.5.1 Blind Angles 266 7.5.2 Scan Compensation 269 7.5.2.1 Coupling Reduction 269 7.5.2.2 Compensating Feed Networks 269 7.5.2.3 Multimode Elements 272 7.5.2.4 External Wave Filter 276 Acknowledgment 276 References 277 8 Finite Arrays 285 8.1 Methods of Analysis 285 8.1.1 Overview 285 8.1.2 Finite-by-Infinite Arrays 289 8.2 Scan Performance of Small Arrays 293 8.3 Finite-by-Infinite Array Gibbsian Model 300 8.3.1 Salient Scan Impedance Characteristics 300 8.3.2 A Gibbsian Model for Finite Arrays 310 References 313 9 Superdirective Arrays 317 9.1 Historical Notes 317 9.2 Maximum Array Directivity 318 9.2.1 Broadside Directivity for Fixed Spacing 318 9.2.2 Directivity as Spacing Approaches Zero 320 9.2.3 Endfire Directivity 321 9.2.4 Bandwidth, Efficiency, and Tolerances 322 9.3 Constrained Optimization 330 9.3.1 Dolph–Chebyshev Superdirectivity 330 9.3.2 Constraint on Q or Tolerances 336 9.4 Matching of Superdirective Arrays 338 9.4.1 Network Loss Magnification 338 9.4.2 HTS Arrays 340 References 340 10 Multiple-Beam Antennas 343 10.1 Introduction 343 10.2 Beamformers 343 10.2.1 Networks 344 10.2.1.1 Power Divider BFN 344 10.2.1.2 Butler Matrix 344 10.2.1.3 Blass and Nolen Matrices 348 10.2.1.4 The 2D BFN 350 10.2.1.5 McFarland 2D Matrix 350 10.2.2 Lenses 351 10.2.2.1 Rotman Lens BFN 351 10.2.2.2 Bootlace Lenses 368 10.2.2.3 Dome Lenses 372 10.2.2.4 Other Lenses 374 10.2.3 Digital Beamforming 377 10.3 Low Sidelobes and Beam Interpolation 378 10.3.1 Low-Sidelobe Techniques 378 10.3.1.1 Interlaced Beams 378 10.3.1.2 Resistive Tapering 379 10.3.1.3 Lower Sidelobes via Lossy Networks 379 10.3.1.4 Beam Superposition 381 10.3.2 Beam Interpolation Circuits 383 10.4 Beam Orthogonality 385 10.4.1 Orthogonal Beams 385 10.4.1.1 Meaning of Orthogonality 385 10.4.1.2 Orthogonality of Distributions 386 10.4.1.3 Orthogonality of Arrays 388 10.4.2 Effects of Nonorthogonality 389 10.4.2.1 Efficiency Loss 389 10.4.2.2 Sidelobe Changes 390 Acknowledgments 393 References 393 11.1 Scope 399 11.2 Ring Arrays 400 11.2.1 Continuous Ring Antenna 400 11.2.2 Discrete Ring Array 403 11.2.3 Beam Cophasal Excitation 407 11.3 Arrays on Cylinders 411 11.3.1 Slot Patterns 411 11.3.2 Array Pattern 412 11.3.2.1 Grating Lobes 416 11.3.2.2 Principal Sidelobes 419 11.3.2.3 Cylindrical Depolarization 421 11.3.3 Slot Mutual Admittance 422 11.3.3.1 Modal Series 426 11.3.3.2 Admittance Data 430 11.3.4 Scan Element Pattern 430 11.4 Sector Arrays on Cylinders 434 11.4.1 Patterns and Directivity 434 11.4.2 Comparison of Planar and Sector Arrays 437 11.4.3 Ring and Cylindrical Array Hardware 441 11.5 Arrays on Cones and Spheres 442 11.5.1 Conical Arrays 443 11.5.1.1 Lattices on a Cone 444 11.5.1.2 Conical Depolarization and Coordinate Systems 447 11.5.1.3 Projective Synthesis 455 11.5.1.4 Patterns and Mutual Coupling 455 11.5.1.5 Conical Array Experiments 456 11.5.2 Spherical Arrays 457 Acknowledgments 458 References 458 12 Connected Arrays 465 12.1 History of Connected Arrays 465 12.2 Connected Array Principles 466 12.3 Connected Dipole Currents 467 12.3.1 Simulation Results: Current Phases 467 12.3.2 Simulation Results: Current Amplitudes 468 12.3.3 Simulation Results: SEP 474 12.4 Connection by Reactance 474 CONTENTS xiii 12.5 Connected Array Extensions 476 References 476 13 Reflectarrays and Retrodirective Arrays 479 13.1 Reflectarrays 479 13.1.1 History of Reflectarrays 479 13.1.2 Geometric Design 480 13.1.3 Elements 481 13.1.4 Phasing of Elements 482 13.1.5 Bandwidth 484 13.1.6 Reflectarray Extensions 485 13.2 Retrodirective Arrays 486 13.2.1 History of Retrodirective Arrays 486 13.2.2 Recent Progress 487 13.2.3 Advanced Applications 491 References 491 14 Reflectors with Arrays 497 14.1 Focal Plane Arrays 497 14.1.1 Focal Plane Fields and Coma 497 14.1.2 Recovering Coma Scan Loss 502 14.1.3 Coma Correction Limitations 502 14.2 Near-Field Electromagnetic Optics 503 14.2.1 Near-Field Cassegrain 503 14.2.1.1 System Trades and Restrictions 507 14.2.2 Near-Field Gregorian 507 References 510 15 Measurements and Tolerances 513 15.1 Measurement of Low-Sidelobe Patterns 513 15.2 Array Diagnostics 516 15.3 Waveguide Simulators 518 15.4 Array Tolerances 524 15.4.1 Directivity Reduction and Average Sidelobe Level 524 15.4.2 Beam Pointing Error 526 15.4.3 Peak Sidelobes 527 Acknowledgment 529 References 529 Author Index 533 Subject Index 543 Lattice 23 2.3 Beam Steering and Quantization Lobes 25 2.3.1 Steering Increment 25 2.3.2 Steering Bandwidth 26 2.3.3 Time Delay Deployment 27 2.3.4 Phaser Quantization Lobes 28 2.3.5 Sub-array Quantization Lobes 32 2.3.6 QL Decollimation: Overlapped Sub-arrays 35 2.4 Directivity 36 2.4.1 Linear Array Directivity 36 2.4.2 Directivity of Arrays of Short Dipoles 39 2.4.3 Directivity of Arrays of Resonant Elements 40 2.4.4 Planar Array Directivity 42 References 46 3 Linear Array Pattern Synthesis 49 3.1 Introduction 49 3.1.1 Pattern Formulations 49 3.1.2 Physics versus Mathematics 51 3.1.3 Taylor Narrow-Beam Design Principles 52 3.2 Dolph–Chebyshev Arrays 53 3.2.1 Half-Wave Spacing 53 3.2.2 Spacing Less Than Half-Wave 59 3.3 Taylor One-Parameter Distribution 60 3.3.1 One-Parameter Design 60 3.3.2 Bickmore–Spellmire Two-Parameter Distribution 65 3.4 Taylor N-Bar Aperture Distribution 66 3.5 Low-Sidelobe Distributions 72 3.5.1 Comparison of Distributions 72 3.5.2 Average Sidelobe Level 75 3.6 Villeneuve N-Bar Array Distribution 76 3.7 Difference Patterns 79 3.7.1 Canonical Patterns 79 3.7.2 Bayliss Patterns 81 3.7.3 Sum and Difference Optimization 85 3.7.4 Discrete Zolotarev Distributions 87 3.8 Sidelobe Envelope Shaping 89 3.9 Shaped Beam Synthesis 92 3.9.1 Woodward–Lawson Synthesis 92 3.9.2 Elliott Synthesis 94 3.10 Thinned Arrays 98 3.10.1 Probabilistic Design 98 3.10.2 Space Tapering 102 3.10.3 Minimum Redundancy Arrays 103 4 Planar and Circular Array Pattern Synthesis 109 4.1 Circular Planar Arrays 109 4.1.1 Flat Plane Slot Arrays 109 4.1.2 Hansen One-Parameter Pattern 110 4.1.3 Taylor Circular n¯ Pattern 114 4.1.4 Circular Bayliss Difference Pattern 118 4.1.5 Difference Pattern Optimization 123 4.2 Noncircular Apertures 125 4.2.1 Two-Dimensional Optimization 125 4.2.2 Ring Sidelobe Synthesis 126 Acknowledgment 127 References 127 5 Array Elements 129 5.1 Dipoles 129 5.1.1 Thin Dipoles 129 5.1.2 Bow-Tie and Open-Sleeve Dipoles 136 5.2 Waveguide Slots 139 5.2.1 Broad Wall Longitudinal Slots 140 5.2.2 Edge Slots 145 5.2.3 Stripline Slots 147 5.2.4 Open-End Waveguides 147 5.2.5 Substrate Integrated Waveguide 148 5.3 TEM Horns 149 5.3.1 Development of TEM Horns 149 5.3.2 Analysis and Design of Horns 151 5.3.3 TEM Horn Arrays 152 5.3.4 Millimeter Wave Antennas 153 5.4 Microstrip Patches and Dipoles 154 5.4.1 Transmission Line Model 157 5.4.2 Cavity and Other Models 159 5.4.3 Parasitic Patch Antennas 159 5.4.4 Balanced-Fed Patches 163 Acknowledgments 163 References 163 6 Array Feeds 171 6.1 Series Feeds 171 6.1.1 Resonant Arrays 171 6.1.1.1 Impedance and Bandwidth 171 6.1.1.2 Resonant Slot Array Design 176 CONTENTS ix 6.1.2 Traveling Wave Arrays 178 6.1.2.1 Frequency Squint and Single-Beam Condition 178 6.1.2.2 Calculation of Element Conductance 181 6.1.2.3 TW Slot Array Design 185 6.1.3 Frequency Scanning 188 6.1.4 Phaser Scanning 193 6.2 Shunt (Parallel) Feeds 194 6.2.1 Corporate Feeds 194 6.2.2 Distributed Arrays 196 6.3 Two-Dimensional Feeds 197 6.3.1 Fixed-Beam Arrays 197 6.3.2 Sequential Excitation Arrays 199 6.3.3 Electronic Scan in One Plane 199 6.3.4 Electronic Scan in Two Planes 201 6.4 Photonic Feed Systems 207 6.4.1 Fiber Optic Delay Feeds 207 6.4.1.1 Binary Delay Lines 207 6.4.1.2 Acousto-Optical Switched Delay 209 6.4.1.3 Modulators and Photodetectors 210 6.4.2 Wavelength Division Fiber Delay 211 6.4.2.1 Dispersive Fiber Delay 211 6.4.2.2 Bragg Fiber Grating Delay 212 6.4.2.3 Traveling Wave Fiber Delay 212 6.4.3 Optical Delay 213 6.4.4 Optical Fourier Transform 213 6.5 Systematic Errors 214 6.5.1 Parallel Phasers 214 6.5.2 Series Phasers 215 6.5.3 Systematic Error Compensation 216 Acknowledgments 216 References 216 7 Mutual Coupling 221 7.1 Introduction 221 7.2 Fundamentals of Scanning Arrays 221 7.2.1 Current Sheet Model 221 7.2.2 Free and Forced Excitations 223 7.2.3 Scan Impedance and Scan Element Pattern 225 7.2.3.1 Transmit versus Receive SEP 228 7.2.3.2 Measurement of Scan Impedance 233 7.2.4 Minimum Scattering Antennas 233 7.3 Spatial Domain Approaches to Mutual Coupling 235 7.3.1 Canonical Couplings 235 7.3.1.1 Dipole and Slot Mutual Impedance 235 7.3.1.2 Microstrip Patch Mutual Impedance 239 7.3.1.3 Horn Mutual Impedance 241 7.3.2 Impedance Matrix Solution 242 7.3.3 The Grating Lobe Series 244 7.4 Spectral Domain Approaches 246 7.4.1 Dipoles and Slots 246 7.4.2 Microstrip Patches 258 7.4.3 Printed Dipoles 261 7.4.4 Printed TEM Horns 262 7.4.5 Unit Cell Simulators 266 7.5 Scan Compensation and Blind Angles 266 7.5.1 Blind Angles 266 7.5.2 Scan Compensation 269 7.5.2.1 Coupling Reduction 269 7.5.2.2 Compensating Feed Networks 269 7.5.2.3 Multimode Elements 272 7.5.2.4 External Wave Filter 276 Acknowledgment 276 References 277 8 Finite Arrays 285 8.1 Methods of Analysis 285 8.1.1 Overview 285 8.1.2 Finite-by-Infinite Arrays 289 8.2 Scan Performance of Small Arrays 293 8.3 Finite-by-Infinite Array Gibbsian Model 300 8.3.1 Salient Scan Impedance Characteristics 300 8.3.2 A Gibbsian Model for Finite Arrays 310 References 313 9 Superdirective Arrays 317 9.1 Historical Notes 317 9.2 Maximum Array Directivity 318 9.2.1 Broadside Directivity for Fixed Spacing 318 9.2.2 Directivity as Spacing Approaches Zero 320 9.2.3 Endfire Directivity 321 9.2.4 Bandwidth, Efficiency, and Tolerances 322 9.3 Constrained Optimization 330 9.3.1 Dolph–Chebyshev Superdirectivity 330 9.3.2 Constraint on Q or Tolerances 336 9.4 Matching of Superdirective Arrays 338 9.4.1 Network Loss Magnification 338 9.4.2 HTS Arrays 340 References 340 10 Multiple-Beam Antennas 343 10.1 Introduction 343 10.2 Beamformers 343 10.2.1 Networks 344 10.2.1.1 Power Divider BFN 344 10.2.1.2 Butler Matrix 344 10.2.1.3 Blass and Nolen Matrices 348 10.2.1.4 The 2D BFN 350 10.2.1.5 McFarland 2D Matrix 350 10.2.2 Lenses 351 10.2.2.1 Rotman Lens BFN 351 10.2.2.2 Bootlace Lenses 368 10.2.2.3 Dome Lenses 372 10.2.2.4 Other Lenses 374 10.2.3 Digital Beamforming 377 10.3 Low Sidelobes and Beam Interpolation 378 10.3.1 Low-Sidelobe Techniques 378 10.3.1.1 Interlaced Beams 378 10.3.1.2 Resistive Tapering 379 10.3.1.3 Lower Sidelobes via Lossy Networks 379 10.3.1.4 Beam Superposition 381 10.3.2 Beam Interpolation Circuits 383 10.4 Beam Orthogonality 385 10.4.1 Orthogonal Beams 385 10.4.1.1 Meaning of Orthogonality 385 10.4.1.2 Orthogonality of Distributions 386 10.4.1.3 Orthogonality of Arrays 388 10.4.2 Effects of Nonorthogonality 389 10.4.2.1 Efficiency Loss 389 10.4.2.2 Sidelobe Changes 390 Acknowledgments 393 References 393 11.1 Scope 399 11.2 Ring Arrays 400 11.2.1 Continuous Ring Antenna 400 11.2.2 Discrete Ring Array 403 11.2.3 Beam Cophasal Excitation 407 11.3 Arrays on Cylinders 411 11.3.1 Slot Patterns 411 11.3.2 Array Pattern 412 11.3.2.1 Grating Lobes 416 11.3.2.2 Principal Sidelobes 419 11.3.2.3 Cylindrical Depolarization 421 11.3.3 Slot Mutual Admittance 422 11.3.3.1 Modal Series 426 11.3.3.2 Admittance Data 430 11.3.4 Scan Element Pattern 430 11.4 Sector Arrays on Cylinders 434 11.4.1 Patterns and Directivity 434 11.4.2 Comparison of Planar and Sector Arrays 437 11.4.3 Ring and Cylindrical Array Hardware 441 11.5 Arrays on Cones and Spheres 442 11.5.1 Conical Arrays 443 11.5.1.1 Lattices on a Cone 444 11.5.1.2 Conical Depolarization and Coordinate Systems 447 11.5.1.3 Projective Synthesis 455 11.5.1.4 Patterns and Mutual Coupling 455 11.5.1.5 Conical Array Experiments 456 11.5.2 Spherical Arrays 457 Acknowledgments 458 References 458 12 Connected Arrays 465 12.1 History of Connected Arrays 465 12.2 Connected Array Principles 466 12.3 Connected Dipole Currents 467 12.3.1 Simulation Results: Current Phases 467 12.3.2 Simulation Results: Current Amplitudes 468 12.3.3 Simulation Results: SEP 474 12.4 Connection by Reactance 474 CONTENTS xiii 12.5 Connected Array Extensions 476 References 476 13 Reflectarrays and Retrodirective Arrays 479 13.1 Reflectarrays 479 13.1.1 History of Reflectarrays 479 13.1.2 Geometric Design 480 13.1.3 Elements 481 13.1.4 Phasing of Elements 482 13.1.5 Bandwidth 484 13.1.6 Reflectarray Extensions 485 13.2 Retrodirective Arrays 486 13.2.1 History of Retrodirective Arrays 486 13.2.2 Recent Progress 487 13.2.3 Advanced Applications 491 References 491 14 Reflectors with Arrays 497 14.1 Focal Plane Arrays 497 14.1.1 Focal Plane Fields and Coma 497 14.1.2 Recovering Coma Scan Loss 502 14.1.3 Coma Correction Limitations 502 14.2 Near-Field Electromagnetic Optics 503 14.2.1 Near-Field Cassegrain 503 14.2.1.1 System Trades and Restrictions 507 14.2.2 Near-Field Gregorian 507 References 510 15 Measurements and Tolerances 513 15.1 Measurement of Low-Sidelobe Patterns 513 15.2 Array Diagnostics 516 15.3 Waveguide Simulators 518 15.4 Array Tolerances 524 15.4.1 Directivity Reduction and Average Sidelobe Level 524 15.4.2 Beam Pointing Error 526 15.4.3 Peak Sidelobes 527 Acknowledgment 529 References 529 Author Index 533 Subject Index 543