采煤机健康状态智能评估方法研究
针对现有采煤机健康状态评估方法存在评估指标权重确定受人为因素影响较大导致评估准确率不高、采用单一评估算法存在局部搜索能力弱和抗干扰能力差、寻找全局最优值能力不足等问题,提出了一种基于主成分分析(PCA)与遗传算法(GA)优化BP神经网络算法(PCA-GA-BP算法)的采煤机健康状态智能评估方法。根据采煤机结构和工作原理选择采煤机状态监测点位,获取采煤机健康状态相关的各项状态参数,采用PCA对采煤机状态参数进行数据降维和特征提取,避免BP神经网络输入的复杂化;引入GA对传统BP神经网络寻找全局最优权值;通过训练参数建立基于GABP的采煤机健康状态智能评估模型,将降维后的采煤机状态参数自动输入评估
暂无评论