改进的AdaBoost-SVM算法用于对等网络贷款平台的安全性和风险进行分类。 由于SVM算法难以处理稀有样本并且训练缓慢,因此使用规则采样来减少分类噪声。 然后,通过学习机的组合,可以识别P2P风险。 结果表明,IAdaBoost算法可以提高风险平台分类的准确性。 分类误差可控制在5%以内。