在数字信号处理中,得到的信号总是或多或少伴随着噪声。如何去除噪声,恢复真实的信号,是信号处理面临的首要问题。一般情形下我们都假定噪声是加性的,即噪声是不依赖于信号的,此时,卡尔曼滤波器是一种非常简便的降噪方法,它是一个最优化自回归数据处理算法,是用前一个估计值和最近一个观察数据来估计信号的当前值,是用状态方程和递推的方法进行估计的,而且它在均方误差意义下是最优的。本文将噪声推广到一般的乘性噪声的情形,利用卡尔曼滤波的基本思想,同样可以得到均方误差意义下的最优滤波,最后通过一个模拟的例子验证了该方法的有效性。