为了减少人脸图像中姿势、表情和光照等因素对人脸识别的影响,引用了一种基于脉冲发放强度的脉冲耦合神经网络(PCNN,pulse coupled neural network)的人脸特征提取方法。不同人脸图像具有不同的灰度特征,将人脸图像输入PCNN模型后可以得到各个图像特定的脉冲发放强度矩阵。实验利用脉冲强度矩阵作为人脸特征,并结合距离分类器——余弦距离进行人脸识别。仿真实验表明,基于强度PCNN模型提取的特征能刻画出人脸的细节,对于不同姿势、表情及面部明显遮挡物的人脸图像,具有较好的识别结果。该方法对于复杂人脸图像特征的提取,具有较强的鲁棒性。