当不同类别的样本在分布上有交迭部分的,分类的错误率主要来自处于交迭区中的样本,如下图所示。当我们得到一个作为识别用的参考样本集时,由于不同类别交迭区域中不同类别的样本彼此穿插,导致用近邻法分类出错。因此如果能将不同类别交界处的样本以适当方式筛选,可以实现既减少样本数又提高正确识别率的双重目的。为此可以利用现有样本集对其自身进行剪辑。