利用金属磁记忆(MMM)技术进行故障检测时,较弱的故障信号提取成为检测准确度高低的关键。采用小波分析和奇异值分解相结合的方法,对金属磁记忆信号经行故障特征提取。通过小波分析将故障信号分解为不同尺度的分量,以形成初始向量特征矩阵,并对该矩阵进行奇异值分解,选择代表特征信号的奇异值分量重构,从而实现对故障信号的特征提取。经过实验证明该方法有效。