蛋白质相互作用数据具有较高的假阳性率和假阴性率,这直接导致计算方法从中预测蛋白质复合物会产生较大的误差。为了弥补数据的这种先天性不足,通过结合多数据源,一种新的蛋白质复合物预测算法被提出。匹配分析和GO功能富集分析被用于评估算法的性能。测试结果表明,新算法远优于以前的其他算法。