为解决因网络数据分布不均匀性而造成的链路预测问题,提出一种改进的代价敏感型链路预测算法(Link Boost).设计一种有监督链路预测可变代价损失函数,该函数对低节点度有链路节点对出现分类错误时的惩罚大于高节点度有链路节点对,解决了节点度的分布偏差.考虑到以损失函数优化为目标的链路预测算法将导致社区内预测链路数量大于社区间的链路数量,进而设计一种Boosting算法来实现损失函数最小化.通过将网络分为多个分区,并对各个分区构建的弱学习器进行融合,提高了算法的可伸缩性.利用4个真实网络数据集进行性能评估.研究结果表明:Link Boost算法的性能与许多当前算法的性能相当或者优于当前算法.