PyTorch实现通过卷积神经网络对MNIST数据集的分类实例。 卷积神经网络(CNN)由一个或多个卷积层和顶端的全连通层组成,同时也包括关联权重和池化层。与其他深度学习结构相比,卷积神经网络在图像和语音识别方面能够给出更好的结果,且考量的参数更少。 卷积神经网络是一类包含卷积计算且具有深度结构的前馈神经网络(Feedforward Neural Networks),是深度学习(deep learning)的代表算法之一 。卷积神经网络具有表征学习能力,能够按其阶层结构对输入信息进行平移不变分类。