近年来,卷积神经网络(Convolutional neural networks,CNN)已在图像理解领域得到了广泛的应用,引起了研究者的关注.特别是随着大规模图像数据的产生以及计算机硬件(特别是GPU)的飞速发展,卷积神经网络以及其改进方法在图像理解中取得了突破性的成果,引发了研究的热潮.本文综述了卷积神经网络在图像理解中的研究进展与典型应用.首先,阐述卷积神经网络的基础理论;然后,阐述其在图像理解的具体方面,如图像分类与物体检测、人脸识别和场景的语义分割等的研究进展与应用.