互联网中存在大量的短文本信息流,需要对其进行会话抽取,将相同主题的内容合并到同一会话中。会话中的内容、时间和用户关系都会对会话抽取的性能产生影响,针对该问题提出了一种基于多策略的会话抽取算法。首先,基于内容、时间和用户关系进行会话分割得到会话片段;然后,利用词向量计算内容语义相似度,并结合时间信息计算会话片段间的相关度,对其进行聚类,实现会话抽取。在三个来源于真实聊天记录的数据集上进行实验的结果表明,本方法优于传统方法,综合F值分别提高了38.5%、15.7%和26.8%。