这是我自己梳理的FCOS目标检测代码,给大家省点时间去debug。FCOS的head部分:cls分支和bbox分支其实是和retinanet一样的,只不过没有了A这个anchor的数量,以及回归的对象不一样,但是网络的整体结构还是和retinanet一样。 在计算流程上不一样的地方我觉得不一样的点是:retinanet是将每个rpn网络的输出concate起来,而FCOS是每层单独预测,之后将每一层的结果concat起来,可能是因为FCOS在concate的时候不方便,因为网络中多出了一个centerness的分支,下面我将从FCOS的测试代码和训练代码开始解析记录,解析中省去了backbon