CIFAR-10 数据集的分类是机器学习中一个公开的基准测试问题,其任务是对一组32x32RGB的图像进行分类,这些图像涵盖了10个类别: 飞机, 汽车, 鸟, 猫, 鹿, 狗, 青蛙, 马, 船以及卡车。 该压缩文件中已经将数据集进行随机混乱排布操作,分散在六个子文件夹中,其中五个作为训练集,一个作为测试集; 另外包括其制作而成的tfrecord文件,具体使用方法可参见博客; 用于训练vgg、resnet等网络