针对既包含有标记样本又包含未标记样本的分类数据,提出数据分布一致性原理,并将其融入到最小最大概率机中。把有标记样本和无标记样本映射到决策超平面所在空间(简称超空间),通过最小化有标记样本和无标记样本在超空间的概率分布差异,充分利用无标签样本来修正最小最大概率机的误差,使得修正后的决策超平面更接近于真正的分类超平面。实验证明,数据分布一致性最小最大概率机(DCMPM)比最小最大概率机(MPM)具有更好的分类性能。