现代大型机电设备的日趋复杂化和自动化导致设备故障现象和机理之间具有很大的不确定性,因此对故障诊断技术提出了 更高的要求。针对汽车发动机的工作原理及其故障知识结构特征,基于贝叶斯网络理论,以机器学习中的增量学习为基础提出和研 究了在线式贝叶斯网络结构学习方法,并利用该方法对汽车发动机故障结构网络进行在线学习。最后通过实验分析验证了在线式 贝叶斯网络故障诊断方法比起传统的贝叶斯网络方法以及专家系统方法,该方法在汽车发动机故障诊断结果中具有更高的准确性 和可靠性。