牛顿-拉夫逊法潮流计算 一、 基本原理 设有单变量非线性方程 f ( x) 0 (11 29) 求解此方程时,先给出解的近似值 (0) x ,它与真解的误差为 (0) x ,则满足方程 (11-29),即 (0) (0) f ( x x ) 0 将上式左边的函数在 (0) x 附近展成泰勒级数,便得 (0) 2 (0) (0) (0) (0) (0) (0) (0) ( ) (0) ( ) ( ) ( ) ( ) ( ) 2! ( ) ( ) (11 30) ! n n x f x x f x f x x f x x f x n 式中, (0) ( ) (0) ( ), , ( ) n f x