通过做数据分析学习数据分析   《数据挖掘与预测分析(第2版)》提供了从数据准备到探索性数据分析、数据建模及模型评估等整个数据分析过程的内容。《数据挖掘与预测分析(第2版)》不仅提供了理解软件底层算法的“白盒”方法,而且提供了能够使读者利用现实世界数据集开展数据挖掘与预测分析的应用方法。 第2版的新内容: ● 添加了500多页的新内容,包括20个新章节,例如,数据建模准备、成本-效益分析、缺失数据填充、聚类优劣度量以及细分模型等。 ● 针对前沿主题的新章节,例如,多元分类模型、BIRCH聚类、集成学习(bagging及boosting)、模型投票与趋向平均等。 ● 每章节后均附有R语言开发园地,读者可以获得完成书中分析所需的R语言源代码,以及通过R代码生成的图、表和结果。 ● 书中的附录为那些对统计基础生疏的读者提供了了解基本概念的材料。 ● 超过750个章节练习,使读者能够自己测试对所学知识的掌握程度,并着手开展数据挖掘与预测分析工作。   《数据挖掘与预测分析(第2版)》将对数据分析人员、数据库分析人员以及CIO具有极大的吸引力,通过学习将使他们知道何种类型的分析将会增加其投资回报。