进化神经网络模型与问题内部机制无关,避免了神经网络收敛到局部,但模型存在参数多而过于复杂的问题。对影响基本进化神经网络模型性能的个体编码方式和适应度函数进行优化,并自适应性定义种群交叉率、变异率。以大气中主要污染物SO2为例,考虑气温、相对湿度、风速等影响因子,实验仿真结果表明优化后的进化神经网络较传统的基本进化神经网络模型进化过程收敛更快,预测效果更佳,为环境保护部门提供可靠的决策依据。