深度学习作为机器学习算法研究中的一个新的技术,其动机在于建立、模拟人脑进行分析学习的神经网络。 深度学习是相对于简单学习而言的,目前多数分类、回归等学习算法都属于简单学习或者浅层结构,浅层结构通常只包含1层或2层的非线性特征转换层,典型的浅层结构有高斯混合模型(GMM)、隐马尔科夫模型(HMM)、条件随机域(CRF)、最大熵模型(MEM)、逻辑回归(LR)、支持向量机(SVM)和多层感知器(MLP)。