一种模糊聚类KNN位置指纹定位算法
阐述了位置指纹定位算法在室内WLAN环境中的应用,分析了KNN定位算法存在的不足,提出一种模糊聚类KNN位置指纹定位算法。该算法首先选取与空间相关性较好的4个信号参数,构成多径纹信号数据库;然后应用主分量分析法(PCA)对原始信号数据库作降维运算,滤除奇异性接入点(AP);最后用模糊C均值聚类算法(FCM)处理数据,进一步滤除奇异性参考点(RP),实现提高定位算法效率与精度的目的。实验表明,改进后的定位算法产生的定位误差明显减小。
阐述了位置指纹定位算法在室内WLAN环境中的应用,分析了KNN定位算法存在的不足,提出一种模糊聚类KNN位置指纹定位算法。该算法首先选取与空间相关性较好的4个信号参数,构成多径纹信号数据库;然后应用主分量分析法(PCA)对原始信号数据库作降维运算,滤除奇异性接入点(AP);最后用模糊C均值聚类算法(FCM)处理数据,进一步滤除奇异性参考点(RP),实现提高定位算法效率与精度的目的。实验表明,改进后的定位算法产生的定位误差明显减小。