大数据的发展已经引领了对能够学习包含数百万至数十亿参数的复杂模型的机器学习系统的新需求,以保证足够的能力来消化海量的数据集,提供强大的预测分析(如高维潜特征、中介表示和决策功能)。为了在这样的尺度上,在成百上千台的分布式机器集群中运行机器学习算法,关键往往是要投入显著的工程性的努力——有人可能会问,这样的工程是否还属于机器学习的研究领域?考虑到如此"大"的机器学习系统可以极大地从根植于机器学习的统计和算法的理解中受益——因此,机器学习的研究人员应该不会回避这样的系统设计——我们讨论了一系列从我们近来对工程尺度的机器学习解决方案的研究中提炼的原则和策略。这些原则和策略从机器学习的应用连续跨越到它