锅炉的主汽温被控对象是一个大惯性、大迟延、非线性且对象变化的系统,常用的汽温控制系统有串级PID控制和基于BP神经网络的PID控制。串级PID控制一般能将主汽温控制在允许的范围内;基于BP神经网络的PID控制将神经网络所具有的自学习能力与PID控制器的鲁棒性相结合,能实现对非线性、大时滞系统模型的控制。对这两种策略在不同负荷下进行了实验仿真,该结果对当前电厂的经济性和安全性有一定参考价值。