基于特征提取和模式识别的多体制通信信号自动调制识别技术是软件无线电领域中的重要研究课题,是复杂电磁环境下频谱管理、频谱检测等非协作通信领域的关键技术之一。提出一种基于深度学习的通信信号调制模式识别算法,应用自编码技术进行特征提取,获得具有较好的抗干扰能力的特征集,然后使用 BP神经网络对经过筛选的特征进行分类识别,实现了MQAM通信信号调制模式自动识别。仿真实验结果表明,所提出的方法分类识别效果好,有效提高了数字调制信号自动识别的抗干扰能力。