提出了一种基于HOG-LBP特征融合的人体头肩检测方法,其要点是将人体头肩图像等分为多个部分重叠的块,从每个块内提取HOG和LBP特征并加以融合,以得到更有效的人体头肩的边缘轮廓和纹理特征,融合后的特征送入支持向量机SVM(Support Vector Machine)通过Bootstrapping的方式进行训练,得到最终的判别模型。实验结果表明,该方法的检测效果优于基于单一HOG、LBP特征的方法。