针对传统HOG特征的行人检测方法中因遮挡及复杂环境存在较高漏检误检情况,建立了一种基于HOG和局部自相似(LSS)特征融合的行人检测算法。利用LSS反映图像内在几何布局和形状属性的特性,用主成分分析(PCA)将HOG和LSS两类特征在实数域降维,再将两种特征组合成新特征,结合线性SVM分类器进行行人检测。实验采用INRIA数据库和Daimler数据库作为训练集训练SVM,用730幅监控视频帧图片作测试集,将该方法与基于传统HOG特征的行人检测方法做对比,结果表明该方法平均漏检误检率降低16%,检测效果优于基于传统HOG特征的行人检测方法。