基于人工分拣的墙地砖质量检测环节不仅造成人力资源的浪费,更无法保证质量检测的准确度,影响了墙地砖产品的档次提高。为了节省成本,进一步提高墙地砖的生产效率,本文利用颜色通道下的共生矩阵特征作为图像视觉特征,并充分利用图像的纹理信息和颜色信息,训练出一个适用于墙地砖缺陷分类的BP神经网络。通过实验结果的数据分析,基于BP神经网络的墙地砖缺陷检测技术能够对多种尺寸规格、颜色、图案的墙地砖得到较好的检测结果。