柴油机声信号包含了丰富的运行状态信息,为了能有效地提取特征参数,需要对柴油机声信号进行去噪处理。针对传统小波阈值去噪和经验模态分解(EMD)去噪的不足,提出了一种将小波阈值与EMD相结合的去噪方法。借助EMD的自适应分解特性,在原始信号分解的基础上,利用相关系数法确定信号主导和噪声主导本征模函数(IMF)分量的分界点,将改进的小波阈值函数对噪声主导的IMF分量进行阈值去噪,再进行信号重构。仿真实验和实测结果表明,该方法去噪效果更优,适合非线性非平稳信号去噪,能够保留柴油机声信号的原貌特征。