结合人脸检测算法和跟踪学习检测算法(Tracking Learning Detection, TLD)完成多个人脸的检测跟踪,用来实现对汽车4S店顾客的实时进店检测。由于采集图像序列帧率低,导致帧间人脸姿态变化大,容易出现目标丢失现象。本文采用Kalman滤波和最邻近数据关联方法,提出一种改进的基于TLD的顾客进店实时检测算法,有效改善了目标短暂丢失现象,增强了算法的鲁棒性。实验证明,该算法具有抵抗光线变化、小范围形变和短暂遮挡的优点,能够解决复杂环境中的实际问题。