乳腺癌已经成为当今世界影响妇女健康的重要疾病。对于乳腺癌诊断来说,当一个恶性病例被误分类为良性病例的时候,其代价远远大于一个良性病例被误分类为恶性病例。它利用数据挖掘领域的代价敏感相关方法,建立一个识别良性乳腺肿瘤和恶性乳腺肿瘤的诊断预测系统。在建模过程中充分考虑到误分类代价的因素,提出了误分类代价策略。通过一系列实验验证了所建立的模型。从实验结果来看,Adaboost与SVM的误分类组合分类算法在正确率和总误分类代价两个评估指标上得到了良好的效果。