Markov网是类似于Bayesian网的另一种进行不确定性推理的有力工具。Markov网是一个无向图,构造时无需发现边的方向,要比构造Bayesian网容易得多。首先构造Markov网,再求出与之等价的Bayesian网。本文提出一种基于信息熵的方法构造Markov网,给出一个有效的基于信息独立测试的Markov网的构造算法,该算法是一种基于依赖分析的算法。在测试样本中的条件独立时,利用信息论中验证信息独立的一个重要结论,从而大大提高效率。为衡量构造的Markov网的好坏,引入I-图、D-图和P-图的概