很明显,目前已经有许多途径可以实现DFT。现在就从图中给出的算法中选定一种短DFT算法开始介绍。而且短DFT可以用Cooley-Tukey、Good-Thomas或Winograd提出的索引模式来开发长DFT。选择实现的共同目标就是将乘法的复杂性降到最低。这是一种可行的准则,因为乘法的实现成本与其他运算,比如加法、数据访问或索引计算相比较而言要高得多。 图给出了各种FFT长度所需要乘法的次数。从中可以得出结论,单纯从乘法复杂性准则考虑,Winograd FFT是最有吸引力的。在本章中,给出了几种形式的N=4×3=12点FFT的设计。表1给出了直接算法、Rader质数因子算法和用于简单DF